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Image Blurring/Deblurring

Start with an image u0, which is a function L2 (Ω), where Ω ⊂ R2.
Want an operator St : L2 (Ω)→ L2 (Ω), such that Stu0 = u(t).
Also want SsStu0 = Ss+tu0. This is a semigroup property, which is
characteristic of parabolic PDE. Thus, we want:

u(0) = u0,
du

dt
= Au, t > 0 (1)

where A is the infinitesimal generator of St , i.e.
Au0 = limt→0

d
dt

Stu0−u0
t
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Parabolic PDE of Blurring

First idea:

u(0) = u0,
du

dt
= ∆u (2)

but this leads to isotropic blurring. Gradient descent of
∫

Ω ‖∇u‖
2

Idea of Perona and Malik:

u(0) = u0,
du

dt
= ∇ · (c (‖∇u‖∇u)) , t > 0 (3)

where the function c is smooth and lims→∞ c(s) = 0 and
lims→0 c(s) = 1. This is anisotropic blurring. Gradient descent of∫

Ω g
(
‖∇u‖2

)
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Image Sharpening

Osher and Rudin introduced the shock filter:

u(0) = u0,
du

dt
= − |∇u| L(u), t > 0 (4)

Typical choices for L are:

L(u) =
∆u

1 + |∆u|
, and L(u) =

∆∞u

1 + ∆∞u
(5)

Only conjectured for continuous u0, the one-dimensional shock
filter has a unique solution. Can be combined with anisotropic
diffusion to have a well-posed framework. But, there isn’t a pure
sharpening framework that has well-posedness results in 2D.
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Backwards Heat Equation

Ill-posedness. Take Fourier transform of the backwards heat
equation ut = −uxx :

u(x , t) =
1

2π

∫ ∞
−∞

e ikx+k2t û0(k)dk (6)

What’s the decay of û0(k) as |k | → ∞?
Let’s take u0 ∈ Hk(R)s, then:

∞ > ‖u0‖Hk =

(∫ (
1 + |ξ|2

)k
|û0(ξ)|2 dξ

)1/2

(7)

Not enough decay! Even u0 ∈ C∞(R) ∩ L2(R) is not enough!
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When Can You Solve the Backwards Heat Equation?

Recall the Fourier transform of a Gaussian is a Gaussian. Suppose

u0 is a Gaussian. Then, û0 = O
(
e−Ck

2
)

for some constant C .

Then the decay of |k | as k →∞ is enough to guarantee a unique
solution up to a critical time: 0 < tc < C .

If, for example, u0(x) = sin(x)/x , then the Fourier transform is the
characteristic function from χ[−1,1] and the backwards heat
equation yields a solution for all time t > 0, but this is a rather
nonphysical example.

But, anyway it fails for any L2-perturbation. So, we say it is
not well posed.
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The Derivative and the Metric

Cannot speak of variational derivatives without notion of metric!
This may not be entirely clear yet. Suppose we have a functional
F : Ω→ R. Suppose we have two smooth functions ρ and φ. The
usual notion of variational derivative from the Calculus of
Variations is:∫

Ω

δF

δρ
(x)φ(x)dx = lim

ε→0

F [ρ+ εφ]− F [ρ]

ε
(8)

Where does the L2 metric occur in this? In the left-hand side!
That is the L2 notion of inner product:〈

δF

δρ
, φ

〉
L2(Ω)

:=

∫
Ω

δF

δρ
(x)φ(x)dx (9)
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Sobolev Norm

Consider now instead the inner product:

〈v ,w〉H1(Ω);λ := (1−λ) 〈v ,w〉L2(Ω)+λ
∑
|α|≤k

〈Dαv ,Dαw〉L2(Ω) (10)

and compute for a given functional F :〈
δF

δρ
, φ

〉
H1(Ω);λ

= lim
ε→0

F [ρ+ εφ]− F [ρ]

ε
(11)
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Sobolev Gradient Descent

This leads to the PDE (for sharpening):

du

dt
=

1

λ

(
I − (I − λ∆)−1

)
u (12)

Which means: {
du
dt = ∆w

w − λ∆w = u
(13)
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Compactness Property

Why does this work forwards and backwards in time? Well, if
u ∈ H1

0 (Ω), then so is w . Then, denoting
A := 1

λ

(
I − (I − λ∆)−1

)
u, we compute:

‖Au‖H1
0 (Ω) =

∫
Ω
∇(Au) · ∇(Au)dx (14)

=

∫
Ω

1

λ
∇(u − w)∇(Au)dx ≤ ‖u‖H1

0 (Ω) ‖Au‖H1
0 (Ω) (15)

since the Sobolev norm of w is controlled by the Sobolev norm of
u. Thus, the operator u 7→ Au is a bounded linear operator and
thus the Sobolev gradient descent is solvable both forward and
backwards in time. Note this argument does not work for the
Laplacian!
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Questions?
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Highlighted Resources

I “Image Sharpening via Sobolev Gradient Flows” J. Calder, A.
Mansouri, and A. Yezzi

I “Partial Differential Equations” Lawrence Evans

I “Gradient Flows in Metric Spaces and in the Space of
Probability Measures” Luigi Ambrosio and Nicola Gigli and
Giuseppe Savaré
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Future Talks

Next Talk:

September 30: Brittany Hamfeldt
Topic: Full Waveform Inversion Using

the Wasserstein Metric


